Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Braz. J. Pharm. Sci. (Online) ; 58: e21189, 2022. graf
Article in English | LILACS | ID: biblio-1420458

ABSTRACT

Abstract Rheumatoid arthritis (RA) is an inflammatory disease that utilizes nonbiologic and biologic drugs for appropriate disease management. However, high cost, adverse effects, reduced effectiveness, and risk of infection have stimulated the search for safer and more efficacious therapeutic strategies. In the present study, we aimed to evaluate the anti-inflammatory and analgesic properties of eucalyptol in an experimental model of arthritis. Mice were administered zymosan or saline intra-articularly. One hour before the zymosan administration, the mice were treated with oral eucalyptol (200-400 mg/kg) and vehicle. Cell influx, neutrophils, lymphocytes, and monocytes were measured in joint exudates. Joint pain was assessed using paw-pressure tests. Orally administered eucalyptol (200 and 400 mg/kg) significantly reduced cell influx, as well as neutrophils, lymphocytes, and monocytes, when compared with the control. Eucalyptol at a dose of 400 mg/kg significantly reversed joint pain and demonstrated analgesic activity (60%); however, 200 mg/kg failed to alter joint pain. These results indicate that oral eucalyptol promotes anti-inflammatory and analgesic activity in mice subjected to zymosan-induced arthritis.


Subject(s)
Animals , Male , Mice , Arthritis/chemically induced , Zymosan/pharmacology , Cell Movement/drug effects , Administration, Oral , Eucalyptol/analysis , Analgesics/administration & dosage , Anti-Inflammatory Agents/administration & dosage
2.
Acta Academiae Medicinae Sinicae ; (6): 91-101, 2022.
Article in Chinese | WPRIM | ID: wpr-927851

ABSTRACT

Objective To explore the mechanism of puerarin inhibiting the proliferation,invasion,and migration of non-small cell lung cancer cells. Methods A549 cells were cultured and treated with different concentrations of puerarin.The inhibition rate (IR) on cell proliferation was detected by CCK-8,and qRT-PCR was performed to detect the mRNA levels of miR-490 and denticleless E3 ubiquitin protein ligase(DTL).Double luciferase reporter assay was employed to identify the targets of miR-490 and DTL based on the establishment of NC mimic group,miR-490 mimic group,NC inhibitor group,and miR-490 inhibitor group.The cells treated by 20 μmol/L puerarin were classified into six groups:DMSO,puerarin,puerarin+NC inhibitor,puerarin+miR-490 inhibitor,puerarin+miR-490 inhibitor+Si-NC,and puerarin+miR-490 inhibitor+Si-DTL.Transwell was used to detect cell migration and invasion.Western blotting was performed to detect the protein levels of epithelial-mesenchymal transition-related markers E-cadherin,N-cadherin,and Vimentin. Results With the increase in puerarin concentration,the IR gradually elevated (F=105.375,P<0.001),miR-490 expression gradually increased (F=32.919,P<0.001),and DTL expression gradually decreased (F=116.120,P<0.001).Compared with NC mimic group,miR-490 mimic group had decreased luciferase activity (t=7.762,P=0.016),raised miR-490 mRNA level (t=13.319,P<0.001),and declined DTL mRNA level (t=7.415,P=0.002).Compared with those in NC inhibitor group,miR-490 demonstrated decreased mRNA level (t=9.523,P=0.001) and DTL presented increased mRNA level (t=11.305,P<0.001) in miR-490 inhibitor group.Western blotting showed that the protein level of DTL was higher in NC mimic group (t=7.953,P=0.001) than in miR-490 mimic group and higher in miR-490 inhibitor group than in NC inhibitor group (t=10.552,P<0.001).Compared with DMSO group,puerarin group showed up-regulated mRNA level of miR-490 (t=10.255,P=0.001) while down-regulated mRNA level of DTL (t=6.682,P=0.003).Compared with those in puerarin+NC inhibitor group,the mRNA level of miR-490 declined (t=10.995,P<0.001) while that of DTL raised (t=12.478,P<0.001) in puerarin+miR-490 inhibitor group.The mRNA level of miR-490 had no significant difference between puerarin+miR-490 inhibitor+Si-NC group and puerarin+miR-490 inhibitor+Si-DTL group (t=1.081,P=0.341),and that of DTL was lower in the latter group (t=14.321,P<0.001).The protein level of DTL was higher in puerarin+miR-490 inhibitor group than in puerarin+NC inhibitor group (t=11.423,P<0.001),and lower in puerarin+miR-490 inhibitor+Si-DTL group than in puerarin+miR-490 inhibitor+Si-NC group (t=12.080,P<0.001).Compared with DMSO group,puerarin group showed inhibited cell proliferation (F=129.27,P<0.001).The activity of cell proliferation was higher in puerarin+miR-490 inhibitor group than in puerarin+NC inhibitor group (F=75.12,P<0.001),and higher in puerarin+miR-490 inhibitor+Si-NC group than in puerarin+miR-490 inhibitor+Si-DTL group (F=52.59,P<0.001).Compared with DMSO group,puerarin group had suppressed cell migration (t=8.963,P=0.001).The cell migration ability was higher in puerarin+miR-490 inhibitor group than in puerarin+NC inhibitor group (t=12.117,P<0.001) and higher in puerarin+miR-490 inhibitor+Si-NC group than in puerarin+miR-490 inhibitor+Si-DTL group (t=12.934,P<0.001).Puerarin group showed weakened cell invasion ability compared with DMSO group (t=4.710,P=0.009).The cell invasion ability was higher in puerarin+miR-490 inhibitor group than in puerarin+NC inhibitor group (t=13.264,P<0.001) and lower in puerarin+miR-490 inhibitor+Si-DTL group than in puerarin+miR-490 inhibitor+Si-NC group (t=13.476,P<0.001).Compared with DMSO group,puerarin group showed up-regulated protein level of E-cadherin (t=7.137,P=0.002) while down-regulated protein levels of N-cadherin (t=8.828,P=0.001) and vimentin (t=6.594,P=0.003).Compared with those in puerarin+NC inhibitor group,the protein level of E-cadherin (t=12.376,P<0.001) decreased while those of N-cadherin (t=13.436,P<0.001) and vimentin (t=11.467,P<0.001) increased in puerarin+miR-490 inhibitor group.Compared with puerarin+miR-490 inhibitor+Si-NC group,puerarin+miR-490 inhibitor+Si-DTL group up-regulated the protein level of E-cadherin (t=13.081,P<0.001) while down-regulated the protein levels of N-cadherin (t=10.835,P<0.001) and vimentin (t=11.862,P<0.001). Conclusion Puerarin could inhibit the proliferation,invasion,and migration of non-small cell lung cancer cells by up-regulating miR-490 and down-regulating DTL.


Subject(s)
Humans , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Isoflavones/pharmacology , Lung Neoplasms , MicroRNAs/metabolism , Ubiquitin-Protein Ligases/metabolism
3.
Rev. bras. anestesiol ; 70(5): 527-533, Sept.-Oct. 2020. tab, graf
Article in English, Portuguese | LILACS | ID: biblio-1143961

ABSTRACT

Abstract Background: The current evidence suggests that oncological surgery, which is a therapy used in the treatment of solid tumors, increases the risk of metastasis. In this regard, a wide range of tumor cells express Voltage-Gated Sodium Channels (VGSC), whose biological roles are not related to the generation of action potentials. In epithelial tumor cells, VGSC are part of cellular structures named invadopodia, involved in cell proliferation, migration, and metastasis. Recent studies showed that lidocaine could decrease cancer recurrence through its direct effects on tumor cells and immunomodulatory properties on the stress response. Objective: The aim of this narrative review is to highlight the role of VGSC in tumor cells, and to describe the potential antiproliferative effect of lidocaine during the pathogenesis of metastasis. Contents: A critical review of literature from April 2017 to April 2019 was performed. Articles found on PubMed (2000-2019) were considered. A free text and MeSH-lidocaine; voltage-gated sodium channels; tumor cells; invadopodia; surgical stress; cell proliferation; metastasis; cancer recurrence - for articles in English, Spanish and Portuguese language - was used. A total of 62 were selected. Conclusion: In animal studies, lidocaine acts by blocking VGSC and other receptors, decreasing migration, invasion, and metastasis. These studies need to be replicated in humans in the context of oncological surgery.


Resumo Justificativa: As evidências atuais sugerem que a cirurgia oncológica, usada no tratamento de tumores sólidos, aumenta o risco de metástase. Nesse sentido, uma ampla gama de células tumorais expressa Canais de Sódio Dependentes de Voltagem (CSDV), cujos papéis biológicos não estão relacionados à produção de potencial de ação. Nas células epiteliais tumorais, o CSDV é parte integrante de estruturas celulares denominadas invadópodes, que participam da proliferação, migração e metástase celular. Estudos recentes mostraram que a lidocaína pode diminuir a recorrência do câncer através de efeitos diretos nas células tumorais e de propriedades imunomoduladoras na resposta ao estresse. Objetivo: O objetivo desta revisão narrativa é analisar o papel do CSDV nas células tumorais e descrever o possível efeito antiproliferativo da lidocaína na patogênese das metástases. Conteúdo: Foi realizada uma revisão crítica da literatura de Abril de 2017 a Abril de 2019. Os artigos encontrados no PubMed (2000 − 2019) foram analisados. Pesquisamos textos de linguagem livre e descritores MeSH-lidocaína; canais de sódio dependentes de voltagem; células tumorais; invadópodes; estresse cirúrgico; proliferação celular; metástase; recorrência do câncer − em artigos publicados em inglês, espanhol e português. Foram selecionadas 62 publicações. Conclusão: Em estudos empregando animais, a lidocaína atua bloqueando o CSDV e outros receptores, diminuindo a migração, invasão e metástase. Esses estudos precisam ser replicados em humanos submetidos a cirurgia oncológica.


Subject(s)
Humans , Animals , Voltage-Gated Sodium Channels/drug effects , Lidocaine/pharmacology , Neoplasms/surgery , Cell Movement/drug effects , Cell Proliferation/drug effects , Voltage-Gated Sodium Channels/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Neoplasm Metastasis/prevention & control , Neoplasms/pathology
4.
Braz. j. med. biol. res ; 53(1): e8659, Jan. 2020. graf
Article in English | LILACS | ID: biblio-1055485

ABSTRACT

Eosinophils are abundant in the reproductive tract, contributing to the remodeling and successful implantation of the embryo. However, the mechanisms by which eosinophils migrate into the uterus and their relationship to edema are still not entirely clear, since there are a variety of chemotactic factors that can cause migration of these cells. Therefore, to evaluate the role of CCR3 in eosinophil migration, ovariectomized C57BL/6 mice were treated with CCR3 antagonist SB 328437 and 17β-estradiol. The hypothesis that the CCR3 receptor plays an important role in eosinophil migration to the mouse uterus was confirmed, because we observed reduction in eosinophil peroxidase activity in these antagonist-treated uteruses. The antagonist also influenced uterine hypertrophy, inhibiting edema formation. Finally, histological analysis of the orcein-stained uteruses showed that the antagonist reduced eosinophil migration together with edema. These data showed that the CCR3 receptor is an important target for studies that seek to clarify the functions of these cells in uterine physiology.


Subject(s)
Animals , Female , Rabbits , Uterus/cytology , Cell Movement/drug effects , Eosinophils/drug effects , Estradiol/administration & dosage , Estrogens/administration & dosage , Receptors, CCR3/antagonists & inhibitors , Ovariectomy , Mice, Inbred C57BL
5.
Braz. j. med. biol. res ; 53(6): e8885, 2020. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1132519

ABSTRACT

In this study, we aimed to analyze the anti-cancer effects of β-elemene combined with paclitaxel for ovarian cancer. RT-qPCR, MTT assay, western blot, flow cytometry, and immunohistochemistry were used to analyze in vitro and in vivo anti-cancer effects of combined treatment of β-elemene and paclitaxel. The in vitro results showed that β-elemene+paclitaxel treatment markedly inhibited ovarian cancer cell growth, migration, and invasion compared to either paclitaxel or β-elemene treatment alone. Results demonstrated that β-elemene+paclitaxel induced apoptosis of SKOV3 cells, down-regulated anti-apoptotic Bcl-2 and Bcl-xl gene expression and up-regulated pro-apoptotic P53 and Apaf1 gene expression in SKOV3 cells. Administration of β-elemene+paclitaxel arrested SKOV3 cell cycle at S phase and down-regulated CDK1, cyclin-B1, and P27 gene expression and apoptotic-related resistant gene expression of MDR1, LRP, and TS in SKOV3 cells. In vivo experiments showed that treatment with β-elemene+paclitaxel significantly inhibited ovarian tumor growth and prolonged the overall survival of SKOV3-bearing mice. In addition, the treatment inhibited phosphorylated STAT3 and NF-κB expression in vitro and in vivo. Furthermore, it inhibited migration and invasion through down-regulation of the STAT-NF-κB signaling pathway in SKOV3 cells. In conclusion, the data suggested that β-elemene+paclitaxel can inhibit ovarian cancer growth via down-regulation of the STAT3-NF-κB signaling pathway, which may be a potential therapeutic strategy for ovarian cancer therapy.


Subject(s)
Animals , Male , Female , Rabbits , Ovarian Neoplasms/drug therapy , Sesquiterpenes/administration & dosage , Cell Movement/drug effects , NF-kappa B/adverse effects , Paclitaxel/administration & dosage , Apoptosis/drug effects , Cell Proliferation/drug effects , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Immunohistochemistry , Transfection , Signal Transduction , Blotting, Western , NF-kappa B/metabolism , Cell Line, Tumor , Real-Time Polymerase Chain Reaction , Mice, Inbred BALB C
6.
Braz. j. med. biol. res ; 53(7): e9230, 2020. graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1132534

ABSTRACT

As a top leading cause of cancer death in many countries, colorectal cancer (CRC) has drawn increasing attention to the study of the pathological mechanism. According to the "cancer stem cell hypothesis", malignancies originate from a small fraction of cancer cells that show self-renewal properties to initiate and sustain tumor growth and tumor metastasis. Therefore, these cancer stem cells (CSC) probably play important roles in tumor recurrence, metastasis, and drug resistance. Previous research reported that lysine-specific histone demethylase 1 (LSD1) maintains cancer stemness through up-regulating stemness markers SOX2 and OCT4. CD133 is believed to be the most robust surface marker for CRC stem cells, however the regulatory effect of LSD1 on stemness of CD133+ CRC has never been reported. In this study, our objectives included: 1) to isolate pure CD133+ and CD133− cells from SW620 cell line; 2) to investigate the effect of LSD1 on the characteristics of CD133+ stem cancer cells by knocking down the target gene. Results suggested that the SW620 cell line had both CD133+ and CD133− subsets. The CD133+ subset exhibited more CSC-like characteristics compared with the CD133− subset with higher viability, colony formation rate, migration and invasion rate, resistance to anti-cancer drugs, and apoptosis in vitro. The CD133+ also induced faster tumor formation and larger tumors in vivo. In the LSD1-knockdown CD133+ cells, the CSC-like characteristics had been all weakened. We conclude that LSD1 was important for CSCs to maintain their "stemness" features, which could be a potential therapeutic target of CRC.


Subject(s)
Humans , Animals , Rats , Neoplastic Stem Cells/drug effects , Colorectal Neoplasms/pathology , Cell Movement/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Histone Demethylases/pharmacology , Neoplastic Stem Cells/metabolism , Gene Expression Regulation, Neoplastic , Blotting, Western , Colony-Forming Units Assay , Cell Line, Tumor
7.
Journal of Zhejiang University. Medical sciences ; (6): 629-636, 2020.
Article in Chinese | WPRIM | ID: wpr-879924

ABSTRACT

Endothelial progenitor cells (EPCs) play an important role in diabetic vascular complications. A large number of studies have revealed that some clinical antihyperglycemics can improve the complications of diabetes by regulating the function of EPCs. Metformin can improve EPCs function in diabetic patients by regulating oxidative stress level or downstream signaling pathway of adenosine monophosphate activated protein kinase; Pioglitazone can delay the aging of EPCs by regulating telomerase activity; acarbose, sitagliptin and insulin can promote the proliferation, migration and adhesion of EPCs. In addition to lowering blood glucose, the effects of antihyperglycemics on EPCs may also be one of the mechanisms to improve the complications of diabetes. This article reviews the research progress on the regulation of EPC proliferation and function by antihyperglycemics.


Subject(s)
Humans , Cell Movement/drug effects , Cells, Cultured , Endothelial Progenitor Cells/drug effects , Hypoglycemic Agents/pharmacology , Signal Transduction/drug effects
8.
Braz. j. otorhinolaryngol. (Impr.) ; 85(6): 705-715, Nov.-Dec. 2019. tab, graf
Article in English | LILACS | ID: biblio-1055510

ABSTRACT

Abstract Introduction: Serum- and glucocorticoid-inducible kinase 3, a serine/threonine kinase that functions downstream of the PI3K signaling pathway, plays a critical role in neoplastic processes. It is expressed by various tumors and contributes to carcinogenesis. Objective: The objective was to investigate serum- and glucocorticoid-inducible kinase 3 expression in nasopharyngeal carcinoma, to study the anti-tumor effects of serum- and glucocorticoid-inducible kinase 3 shRNA by inhibiting its expression in nasopharyngeal carcinoma cells and to discuss the potential implications of our findings. Methods: Serum- and glucocorticoid-inducible kinase 3 protein expression in nasopharyngeal carcinoma cell lines (CNE-1, CNE-2, HNE-1, HONE-1, and SUNE-1) and the human immortalized nasopharyngeal epithelium cell line NP69 were assayed by western blotting. Serum- and glucocorticoid-inducible kinase 3 expression in 42 paraffin-embedded nasopharyngeal carcinoma tissues were performed by immunohistochemistry. MTT assay, flow cytometry, and scratch tests were performed after CNE-2 cells were transfected with the best serum- and glucocorticoid-inducible kinase 3 shRNA plasmid selected by western blotting using lipofectamine to study its effect on cell proliferation, apoptosis, and migration. Results: Serum- and glucocorticoid-inducible kinase 3 was overexpressed in human nasopharyngeal carcinoma tissues and cells. Serum- and glucocorticoid-inducible kinase 3 expression decreased markedly after CNE-2 cells were transfected with the serum- and glucocorticoid-inducible kinase 3 shRNA, leading to strong inhibition of cell proliferation and migration. In addition, the apoptosis rate increased in CNE-2 cells after serum- and glucocorticoid-inducible kinase 3 knockdown. Conclusion: Serum- and glucocorticoid-inducible kinase 3 expression was more frequently observed as the nasopharyngeal epithelium progresses from normal tissue to carcinoma. This suggests that serum- and glucocorticoid-inducible kinase 3 contributes to the multistep process of NPC carcinogenesis. Serum- and glucocorticoid-inducible kinase 3 represents a target for nasopharyngeal carcinoma therapy, and a basis exists for the further investigation of this adjuvant treatment modality for nasopharyngeal carcinoma.


Resumo Introdução: A quinase 3 sérica induzida por glicocorticoide, uma serina/treonina quinase que funciona downstream da via de sinalização PI3K, desempenha um papel crítico nos processos neoplásicos. É expressa por vários tumores e contribui para a carcinogênese. Objetivo: Investigar a expressão de quinase 3 sérica induzida por glicocorticoide no carcinoma nasofaríngeo, estudar os efeitos antitumorais do shRNA da quinase 3 sérica induzida por glicocorticoide, que inibem sua expressão em células de carcinoma nasofaríngeo, e discutir as implicações potenciais de nossos achados. Método: A expressão de proteína quinase 3 sérica induzida por glicocorticoide em linhagens de células de carcinoma nasofaríngeo (CNE-1, CNE-2, HNE-1, HONE-1 e SUNE-1) e a linhagem de células humanas imortalizadas do epitélio nasofaríngeo NP69 foram avaliadas por Western blot. A expressão da quinase 3 sérica induzida por glicocorticoide em 42 tecidos de CNF embebidos em parafina foi feita por imuno-histoquímica. Testes com MTT, citometria de fluxo e testes de raspagem foram feitos após as células CNE-2 terem sido transfectadas com o melhor plasmídeo shRNA da quinase 3 sérica induzida por glicocorticoide selecionado por Western blot, com o uso de lipofectamina para estudar seu efeito na proliferação, apoptose e migração celular. Resultados: Foi observada uma sobre-expressão da quinase 3 sérica induzida por glicocorticoide em tecidos e células de carcinoma nasofaríngeo humanas. A expressão de quinase 3 sérica induzida por glicocorticoide diminuiu acentuadamente após as células CNE-2 terem sido transfectadas com o shRNA da quinase 3 sérica induzida por glicocorticoide, conduzindo a forte inibição de proliferação e migração celular. Além disso, a taxa de apoptose aumentou nas células CNE-2 após o knockdown da quinase 3 sérica induzida por glicocorticoide. Conclusão: A expressão de quinase 3 sérica induzida por glicocorticoide foi observada com maior frequência à medida que o epitélio nasofaríngeo progride de tecido normal para carcinoma. Isso sugere que a quinase 3 sérica induzida por glicocorticoide contribui para o processo multietapas da carcinogênese do carcinoma nasofaríngeo. A quinase 3 sérica induzida por glicocorticoide representa um alvo para a terapia do carcinoma nasofaríngeo e há uma base para a investigação adicional dessa modalidade de tratamento adjuvante para o carcinoma nasofaríngeo.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Nasopharyngeal Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Immediate-Early Proteins/metabolism , Nasopharyngeal Carcinoma/metabolism , Immunohistochemistry , Cell Movement/drug effects , Nasopharyngeal Neoplasms/pathology , Nasopharyngitis/metabolism , Nasopharyngitis/pathology , Protein Serine-Threonine Kinases/pharmacology , Apoptosis , Immediate-Early Proteins/pharmacology , RNA, Small Interfering/metabolism , Cell Proliferation/drug effects , Nasopharyngeal Carcinoma/pathology
9.
Arq. bras. oftalmol ; 82(1): 38-44, Jan.-Feb. 2019. tab, graf
Article in English | LILACS | ID: biblio-973869

ABSTRACT

ABSTRACT Purpose: To evaluate the effects of ranibizumab and amfenac in human uveal melanoma cell lines and to explore the ability of these compounds to sensitize uveal melanoma cells to radiation therapy. Methods: The 92.1 human uveal melanoma cell line was cultured and subjected to the proposed treatment (ranibizumab, amfenac, and a combination of both). Proliferation, migration, and invasion assays of the 92.1 uveal melanoma cell line were assessed after pretreatment with ranibizumab (125 mg/mL), amfenac (150 nM), or a combination of both. In addition, proliferation rates were assessed after treatment with ranibizumab and amfenac, and the cells were subsequently exposed to various radiation doses (0, 4, and 8 Gy). Results: Proliferation assay: cells treated with a combination of ranibizumab and amfenac had lower proliferation rates than controls (p=0.016) and than those treated with only ranibizumab (p=0.033). Migration assay: a significantly lower migration rate was observed in cells treated with amfenac than the control (p=0.014) and than those treated with ranibizumab (p=0.044). Invasion assay: there were no significant differences among the studied groups. Irradiation exposure: in the 4 Gy dose group, there were no significant differences among any groups. In the 8 Gy dose group, treatment with ranibizumab, amfenac, and their combination prior to application of the 8 Gy radiation led to a marked reduction in proliferation rates (p=0.009, p=0.01, and p=0.034, respectively) compared with controls. Conclusion: Combination of ranibizumab and amfenac reduced the proliferation rate of uveal melanoma cells; however, only amfenac monotherapy significantly decreased cell migration. The radiosensitivity of the 92.1 uveal melanoma cell line increased following the administration of ranibizumab, amfenac, and their combination. Further investigation is warranted to determine if this is a viable pretreatment strategy to render large tumors amenable to radiotherapy.


RESUMO Objetivo: Avaliar os efeitos do ranibizumabe em associação com o amfenac nas células de melanoma uveal humano e explorar a capacidade desses compostos em sensibilizar as células de melanoma uveal à radioterapia. Métodos: Células de melanoma uveal humano do tipo 92.1 foram cultivadas e submetidas ao tratamento proposto (ranibizumabe, amfenac e a combinação de ambos). Ensaios de proliferação, migração e invasão com as células de melanoma uveal do tipo 92.1 foram avaliados após tratamento com ranibizumabe (125 mg/ml), amfenac (150 nM) e a combinação de ambos. Além disso, as taxas de proliferação foram avaliadas após tratamento com ranibizumabe e amfenac com subsequente exposição das células a diferentes doses de radiação (0 Gy, 4 Gy e 8 Gy). Resultados: Ensaio de proliferação: células tratadas com ranibizumabe e amfenac combinados apresentaram taxas de proliferação inferiores em comparação ao grupo controle (p=0,016), do que as tratadas apenas com ranibizumabe (p=0,033). Ensaio de migração: foi observada uma taxa de migração significativamente mais baixa nas células tratadas com amfenac do que no grupo controle (p=0,014) e do que nas tratadas com ranibizumabe (p=0,044). Ensaio de invasão: não houve diferenças significativas entre os grupos estudados. Exposição à irradiação: no grupo da dose de 4 Gy, não houve diferença significante entre os grupos. No grupo da dose de 8 Gy, o tratamento com ranibizumabe, afenac e sua combinação antes da aplicação da radiação de 8 Gy levou a uma redução acentuada nas taxas de proliferação (p=0,009, p=0,01 e p=0,034, respectivamente) em comparação aos grupos controle. Conclusão: A combinação de ranibizumabe e amfenac reduziu a taxa de proliferação das células de melanoma uveal; no entanto, apenas o amfenac diminuiu significativamente a migração celular. A radiossensibilidade das células de melanoma uveal do tipo 92.1 aumentou após a administração de ranibizumabe, amfenac e sua combinação. Mais investigações são necessárias para determinar se esta é uma estratégia de pré-tratamento viável para tornar grandes tumores passíveis de radioterapia.


Subject(s)
Humans , Phenylacetates/pharmacology , Angiogenesis Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Ranibizumab/pharmacology , Melanoma/drug therapy , Melanoma/radiotherapy , Radiation Tolerance , Uveal Neoplasms/drug therapy , Uveal Neoplasms/radiotherapy , Antineoplastic Combined Chemotherapy Protocols , Cell Movement/drug effects , Cell Movement/radiation effects , Reproducibility of Results , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Dose-Response Relationship, Radiation
10.
Braz. j. med. biol. res ; 52(4): e8409, 2019. graf
Article in English | LILACS | ID: biblio-1001514

ABSTRACT

Benzyl isothiocyanate (BITC) has been shown to inhibit invasion and induce apoptosis of various types of cancer. However, its role on human oral squamous cell carcinoma (OSCC) cells is still not well elucidated. In the present study, we investigated the effect of BITC on apoptosis and invasion of SCC9 cells, and its underlying mechanisms in vitro and in vivo. SCC9 cells were exposed to BITC (5 and 25 μM) for 24 and 48 h. Cell growth, apoptosis, invasion, and migration were detected in vitro by MTT, FITC-conjugated annexin V/propidium iodide staining followed by flow cytometry, Matrigel-coated semi-permeable modified Boyden, and wound-healing assay. S100A4, PUMA, and MMP-9 expressions were detected to investigate its mechanisms. Xenotransplantation experiments were used to investigate the role of BITC on tumor growth and lung metastasis. BITC inhibited cell viability and induced cell apoptosis in a dose- and time-dependent manner through upregulation of PUMA signals. BITC inhibited cell invasion and migration by downregulation of S100A4 dependent MMP-9 signals. The ip administration of BITC reduced tumor growth but not lung metastasis of SCC9 cells subcutaneously implanted in nude mice. BITC treatment activated pro-apoptotic PUMA and inhibited S100A4-dependent MMP-9 signals, resulting in the inhibition of cell growth and invasion in cultured and xenografted SCC9 cells. Thereby, BITC is a potential therapeutic approach for OSCC.


Subject(s)
Animals , Female , Rabbits , Carcinoma, Squamous Cell/pathology , Cell Movement/drug effects , Apoptosis/drug effects , Isothiocyanates/pharmacology , Cell Proliferation/drug effects , S100 Calcium-Binding Protein A4/drug effects , Immunohistochemistry , Cell Survival/drug effects , Cell Line, Tumor , S100 Calcium-Binding Protein A4/metabolism , Mice, Nude
11.
Braz. j. med. biol. res ; 52(10): e8385, 2019. graf
Article in English | LILACS | ID: biblio-1039242

ABSTRACT

Malignant melanoma (MM) is one of the malignant tumors with highly metastatic and aggressive biological actions. Schizandrin A (SchA) is a bioactive lignin compound with strong anti-oxidant and anti-aging properties, which is stable at room temperature and is often stored in a cool dry place. Hence, we investigated the effects of SchA on MM cell line A375 and its underlying mechanism. A375 cells were used to construct an in vitro MM cell model. Cell viability, proliferation, apoptosis, and migration were detected by Cell Counting Kit-8, BrdU assay, flow cytometry, and transwell two-chamber assay, respectively. The cell cycle-related protein cyclin D1 and cell apoptotic proteins (Bcl-2, Bax, cleaved-caspase-3, and cleaved-caspase-9) were analyzed by western blot. Alteration of H19 expression was achieved by transfecting with pEX-H19. PI3K/AKT pathway was measured by detecting phosphorylation of PI3K and AKT. SchA significantly decreased cell viability in a dose-dependent manner. Furthermore, SchA inhibited cell proliferation and cyclin D1 expression. SchA increased cell apoptosis along with the up-regulation of pro-apoptotic proteins (cleaved-caspase-3, cleaved-caspase-9, and Bax) and the down-regulation of anti-apoptotic protein (Bcl-2). Besides, SchA decreased migration and down-regulated matrix metalloproteinases (MMP)-2 and MMP-9. SchA down-regulated lncRNA H19. Overexpression of H19 blockaded the inhibitory effects of SchA on A375 cells. SchA decreased the phosphorylation of PI3K and AKT while H19 overexpression promoted the phosphorylation of PI3K and AKT. SchA inhibited A375 cell growth, migration, and the PI3K/AKT pathway through down-regulating H19.


Subject(s)
Humans , Polycyclic Compounds/pharmacology , Down-Regulation/drug effects , Cell Movement/drug effects , Apoptosis/drug effects , Lignans/pharmacology , Cyclooctanes/pharmacology , Cell Proliferation/drug effects , Melanoma/pathology , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Blotting, Western , MicroRNAs/metabolism , Cell Line, Tumor , Real-Time Polymerase Chain Reaction , RNA, Long Noncoding
12.
Braz. j. med. biol. res ; 52(12): e8934, 2019. graf
Article in English | LILACS | ID: biblio-1055468

ABSTRACT

Baicalein (BAI) is an acknowledged flavonoids compound, which is regarded as a useful therapeutic pharmaceutical for numerous cancers. However, its involvement in melanoma is largely unknown. This study aimed to examine the anti-melanoma function of BAI and unraveled the regulatory mechanism involved. A375 and SK-MEL-28 were treated with BAI for 24 h. Then, CCK-8 assay, flow cytometry, and transwell assay were carried out to investigate cell growth, migration, and invasion. RT-qPCR was applied to detect the expression of colon cancer associated transcript-1 (CCAT1) in melanoma tissues and cells. The functions of CCAT1 in melanoma cells were also evaluated. Western blot was utilized to appraise Wnt/β-catenin or MEK/ERK pathways. BAI restrained cell proliferation and stimulated cell apoptotic capability of melanoma by suppressing cleaved-caspase-3 and cleaved-PARP. Cell migratory and invasive abilities were restrained by BAI via inhibiting MMP-2 and vimentin. CCAT1 was over-expressed in melanoma tissues and down-regulated by BAI in melanoma cells. Overexpressed CCAT1 reversed the BAI-induced anti-growth, anti-migratory, and anti-invasive effects. Furthermore, BAI inhibited Wnt/β-catenin and MEK/ERK pathways-axis via regulating CCAT1. Our study indicated that BAI blocked Wnt/β-catenin and MEK/ERK pathways via regulating CCAT1, thereby inhibiting melanoma cell proliferation, migration, and invasion.


Subject(s)
Humans , Gene Expression Regulation, Neoplastic/drug effects , Flavanones/pharmacology , RNA, Long Noncoding/metabolism , Melanoma/pathology , Down-Regulation/drug effects , Cell Movement/drug effects , Blotting, Western , Reverse Transcriptase Polymerase Chain Reaction , Cell Line, Tumor , Cell Proliferation/drug effects , Real-Time Polymerase Chain Reaction , Neoplasm Invasiveness
13.
Biol. Res ; 52: 57-57, 2019. ilus, graf
Article in English | LILACS | ID: biblio-1505777

ABSTRACT

BACKGROUND: Gastric cancer is a common malignant tumor with high morbidity and mortality worldwide, which seriously affects human health. Gramicidin is a short peptide antibiotic which could be used for treating infection induced by bacteria or fungi. However, the anti-cancer effect of gramicidin on gastric cancer cells and its underlying mechanism remains largely unknown. RESULTS: Gastric cancer cells SGC-7901, BGC-823 and normal gastric mucosal cells GES-1 were treated with different concentrations of gramicidin respectively. The results of CCK-8 experiment revealed cellular toxicity of gramicidin to cancer cells while cell colony formation assay showed that gramicidin significantly inhibited the proliferation of gastric cancer cells, but had little effect on normal gastric mucosal cells. In addition, the wound healing assay showed that gramicidin inhibited the migration of SGC-7901 cell. Meanwhile, apoptosis and cell cycle analysis revealed that gramicidin induced cell apoptosis with G2/M cell cycle inhibition. Furthermore, western blot analysis demonstrated that gramicidin down-regulated the expression of cyclinD1 and Bcl-2 as well as the FoxO1 phosphorylation. CONCLUSIONS: The current study illustrated the anti-tumor activity of gramicidin on gastric cancer cells, providing a possibility for gramicidin to be applied in clinical practice for the treatment of gastric cancer.


Subject(s)
Humans , Stomach Neoplasms/pathology , Cell Cycle/drug effects , Cell Movement/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Gramicidin/pharmacology , Phosphorylation , Down-Regulation , Proto-Oncogene Proteins c-bcl-2/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Cyclin D1/drug effects , Cyclin D1/metabolism , Cell Line, Tumor , Forkhead Box Protein O1/drug effects , Forkhead Box Protein O1/metabolism
14.
Braz. oral res. (Online) ; 33: e117, 2019. tab, graf
Article in English | LILACS, BBO | ID: biblio-1132651

ABSTRACT

Abstract: The aim of this study was to evaluate the effect of mineral trioxide aggregate (MTA) and Brazilian propolis on the cell viability, mineralization, anti-inflammatory ability, and migration of human dental pulp cells (hDPCs). The cell viability was evaluated with CCK-8 kit after 1, 5, 7, and 9 days. The deposition of calcified matrix and the expression of osteogenesis-related genes were evaluated by Alizarin Red staining and real-time PCR after incubation in osteogenic medium for 21 days. The expression of inflammation-related genes in cells was determined after exposure to 1 μg/mL LPS for 3 h. Finally, the numbers of cells that migrated through the permeable membranes were compared during 15 h. Propolis and MTA significantly increased the viability of hDPCscompared to the control group on days 7 and 9. In the propolis group, significant enhancement of osteogenic potential and suppressed expression of IL-1β and IL-6 was observed after LPS exposure compared to the MTA and control groups. The number of migration cells in the propolis group was similar to that of the control group, while MTA significantly promoted cell migration. Propolis showed comparable cell viability to that of MTA and exhibited significantly higher anti-inflammatory and mineralization promotion effects on hDPCs.


Subject(s)
Humans , Oxides/pharmacology , Propolis/pharmacology , Silicates/pharmacology , Calcium Compounds/pharmacology , Aluminum Compounds/pharmacology , Dental Pulp/cytology , Dental Pulp/drug effects , Anti-Inflammatory Agents/pharmacology , Brazil , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Reproducibility of Results , Anthraquinones , Interleukin-6/analysis , Tumor Necrosis Factor-alpha , Statistics, Nonparametric , Drug Combinations , Interleukin-1beta/analysis , Real-Time Polymerase Chain Reaction , Odontoblasts/drug effects
15.
Braz. j. med. biol. res ; 52(2): e8209, 2019. tab, graf
Article in English | LILACS | ID: biblio-984033

ABSTRACT

Vegetable oils have been used for a plethora of health benefits by their incorporation in foods, cosmetics, and pharmaceutical products, especially those intended for skin care. This study aimed to investigate the cutaneous benefits of a vegetable oil blend (VOB) formulation and its fatty acid composition. The anti-inflammatory activity was studied in macrophages of RAW 264.7 cells by investigating the release of nitric oxide (NO), superoxide anion generation (O2-), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). ABTS cation radical scavenging capacity assay, ferric reducing antioxidant potential (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and NO free radical scavenging assays were used to evaluate the antioxidant activity. VOB was tested for its ability to stimulate fibroblast proliferation and migration using the scratch assay, and antibacterial activity by the microdilution test. The fatty acid profile of a freshly prepared VOB formulation was determined by gas chromatography before and after accelerated stability testing. Chemical composition of VOB revealed the presence of oleic acid (C18:1n-9; 63.3%), linoleic acid (C18:2n-6; 4.7%), and linolenic acid (C18:3n-6; 5.1%) as major mono- and polyunsaturated fatty acids. No changes in the organoleptic characteristics and fatty acid composition were observed after the accelerated stability test. VOB 100 µg/mL reduced the healing time by increasing the total number of cells in the wounded area by 43.0±5.1% compared to the negative control group. VOB also suppressed the pro-inflammatory TNF-α and IL-6 cytokines, and NO and O2- production in lipopolysaccharide-stimulated macrophage cells. In conclusion, the VOB formulation contributed to the improvement of current therapeutic strategies for cutaneous applications in skin care.


Subject(s)
Animals , Rabbits , Wound Healing/drug effects , Plant Oils/pharmacology , Fatty Acids/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Plant Oils/chemistry , Cell Movement/drug effects , Cells, Cultured , Skin Care , Cell Proliferation/drug effects , Fibroblasts/drug effects
16.
Bol. latinoam. Caribe plantas med. aromát ; 17(6): 575-582, nov. 2018. ilus
Article in English | LILACS | ID: biblio-1007341

ABSTRACT

The skin is the largest organ of the human body and its main function is to protect it from the external environment. It is exposed to injuries that require a rapid healing process to recover its functionality. Microorganisms inhabit the skin, which makes up the normal microbial flora, but in situations of injury they can cause infections that slow down the regeneration process. Therefore, there is a great interest in the development of alternative methods to accelerate the regeneration process and prevent infections. In this work, the efficacy of flavonoid 3-O-methylgalangine and the terpenic derivative Filifolinone and its mixtures, isolated from plants of the genus Heliotropium, on the stimulation of cell proliferation was evaluated. The results showed that the mixtures stimulated proliferation and migration in MA104 cells mainly due to the presence of Filifolinone, that together with the known antibacterial activity of 3-O-methylgalangine, opens new alternatives for the use of natural compounds in healing processes.


La piel es el órgano más grande del cuerpo humano y su función principal es protegerla del entorno externo. Está expuesta a lesiones que requieren un proceso de curación rápido para recuperar su funcionalidad. Los microorganismos que habitan en la piel, constituyen la flora microbiana normal, pero en situaciones de lesión pueden causar infecciones que retardan el proceso de regeneración. Por lo tanto, existe un gran interés en el desarrollo de métodos alternativos para acelerar el proceso de regeneración y prevenir infecciones. En este trabajo, se evaluó la eficacia del flavonoide 3-O-metilgalangina y el derivado terpénico Filifolinona y sus mezclas, aisladas de plantas del género Heliotropium, en la estimulación de la proliferación celular. Los resultados mostraron que las mezclas estimularon la proliferación y la migración en las células MA104 debido principalmente a la presencia de Filifolinona, que junto con la actividad antibacteriana conocida de la 3-O-metilgalangina, abre nuevas alternativas para el uso de compuestos naturales en los procesos de curación.


Subject(s)
Terpenes/pharmacology , Flavonoids/pharmacology , Heliotropium , Cell Proliferation/drug effects , Terpenes/chemistry , Wound Healing , Flavonoids/chemistry , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Epithelial Cells/drug effects
17.
Braz. j. med. biol. res ; 51(10): e7151, 2018. graf
Article in English | LILACS | ID: biblio-951709

ABSTRACT

Icariin has been reported to possess high anticancer activity. Colon carcinoma is one of the leading causes of cancer-related mortality worldwide. Here, the anticancer activity of icariin against HCT116 colon carcinoma cells and the possible underlying mechanism were studied. The trypan blue staining assay, wound healing assay, clonogenic assay, CCK-8 assay, and Annexin V-FITC/PI double staining method were carried out to determine the changes of HCT116 cell growth and migration. mRNA and protein expressions were determined by quantitative real-time PCR and western blot, respectively. Moreover, small interfering RNA (siRNA) plasmid was used to examine the role of p53 in icariin-induced apoptosis in HCT116 cells. Icariin significantly suppressed colon carcinoma HCT116 cells by decreasing migration and viability, and simultaneously promoting apoptosis. Icariin exerted the anti-tumor effect in a dose-dependent manner by up-regulating p53. During treatment of icariin, p-p53, p21, and Bax levels increased, and Bcl-2 level decreased. Short time treatment with icariin induced DNA damage in HCT116 cells. Furthermore, the cytotoxicity of icariin was decreased after p53 knockdown or by using caspase inhibitors. p53 was involved in activities of caspase-9 and caspase-3. Icariin repressed colon carcinoma cell line HCT116 by enhancing p53 expression and activating p53 functions possibly through Bcl-2/Bax imbalance and caspase-9 and -3 regulation. Icariin treatment also induced DNA damage in HCT116 cells.


Subject(s)
Humans , Flavonoids/pharmacology , Cell Movement/drug effects , Tumor Suppressor Protein p53/drug effects , Apoptosis/drug effects , Colonic Neoplasms/pathology , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Blotting, Western , Tumor Suppressor Protein p53/metabolism , Colonic Neoplasms/metabolism , RNA, Small Interfering , HCT116 Cells , Real-Time Polymerase Chain Reaction
18.
Bauru; s.n; 2018. 98 p. ilus, graf, tab.
Thesis in Portuguese | LILACS, BBO | ID: biblio-885097

ABSTRACT

O osteossarcoma (OS) é o tumor maligno primário mais comum do tecido ósseo, caracterizado pela formação de osteócitos anormais. Apesar do avanço nas terapias convencionais (quimioterapia e retirada do tumor), essas não conseguem eliminar totalmente as células tumorais e impedir a progressão da doença. Recentemente, agentes derivados de fontes naturais ganharam considerável atenção por causa de sua segurança, eficácia e disponibilidade imediata. Nesse sentido, a apocinina, inibidor do complexo NADPH-oxidase, vem sendo estudada como agente antitumoral em alguns tipos de câncer como: pâncreas, próstata, pulmão e mama. Apocinina é um pró-fármaco e sua ação parece estar relacionada à sua conversão produzindo a diapocinina, a qual se mostrou mais efetiva do que a apocinina. Portanto, o objetivo desse estudo é avaliar, in vitro, o potencial antitumoral da apocinina e diapocinina em células de osteossarcoma humano. Para isso, foram utilizados osteoblastos humanos normais (HOb) e osteossarcoma humano imortalizadas (SaOS-2) tratados ou não com apocinina e diapocinina em diversas concentrações. Foram realizados os ensaios de viabilidade celular, alterações morfológicas, apoptose celular, produção de espécies reativas de oxigênio (EROs), formação de colônias, migração, invasão e expressão do fator indutor de hipóxia-1alfa (HIF-1). Também foram conduzidos ensaios para verificar a atividade de metaloproteinase de matriz (MMP) 2 e 9. Os resultados em SaOS-2 mostraram que o tratamento com apocinina nas concentrações de 1,5 e 3 mM; e diapocinina nas concentrações de 0,75 e 1,5 mM reduziram a viabilidade; aumentaram o número de células em apoptose e diminuíram a produção de EROs; sem causar danos às células HOb. Além disso, essas mesmas concentrações inibiram a migração e invasão celular; diminuíram a expressão de HIF-1; e reduziram a atividade de MMP-2 em SaOS-2. Considerando os resultados obtidos, concluímos que a apocinina e diapocinina podem atuar como possíveis moduladores de células tumorais, sendo que a diapocinina mostrou ser mais efetiva nos parâmetros testados.(AU)


Osteosarcoma (OS) is the most common primary malignant tumor of bone tissue, characterized by the formation of abnormal osteocytes. Despite advances in conventional therapies (chemotherapy and surgery) they cannot completely eliminate tumor cells and prevent the progression of the disease. Recently, agents derived from natural sources have achieved considerable attention because of their safety, efficacy and immediate availability of therapies. In this way, apocynin, an inhibitor of the NADPH-oxidase complex, has been studied as an antitumor agent in some types of cancer, such as pancreas, prostate, lung and breast. Apocynin is a prodrug and its action indicate to be related to its conversion to diapocynin, which has been shown to be more efficient than apocynin itself. Thus, the aim of this study is to evaluate, in vitro, the antitumor potential of apocynin and diapocynin in human osteosarcoma cells. For this, normal human osteoblasts (HOb) and immortalized human osteosarcoma cells (SaOS-2) were treated or no-treated with apocynin and diapocynin in various concentrations. Cell viability assay, morphological alterations, cellular apoptosis, reactive oxygen species (ROS) production, colony formation, migration, invasion and expression of hypoxia-inducible factor-1 alpha (HIF-1) were performed. We also performed assays to verify the activity of matrix metalloproteinase (MMP) 2 and 9. The results in SaOS-2 showed that treatment with apocynin at concentrations of 1,5 e 3 mM; and diapocynin at concentrations of 0,75 e 1,5 mM reduced cell viability; increased the number of cells in apoptosis and decreased the production of ROS; without damaging HOb cells. Moreover, these same concentrations inhibited cell migration and invasion; decreased HIF-1 expression; and reduced MMP 2 activity in SaOS-2. Considering the results, we suggest that apocynin and diapocynin may act as possible modulators of tumor cells, and diapocynin has been shown to be more effective.(AU)


Subject(s)
Humans , Acetophenones/pharmacology , Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacology , Osteosarcoma/drug therapy , Apoptosis/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Matrix Metalloproteinase 2/drug effects , Matrix Metalloproteinase 9/drug effects , Osteoblasts/drug effects , Reactive Oxygen Species/analysis , Reproducibility of Results , Tumor Cells, Cultured
19.
Braz. j. med. biol. res ; 51(4): e6803, 2018. graf
Article in English | LILACS | ID: biblio-889059

ABSTRACT

Propofol is an intravenous sedative hypnotic agent of which the growth-inhibitory effect has been reported on various cancers. However, the roles of propofol in endometrial cancer (EC) remain unclear. This study aimed to explore the effects of propofol on EC in vitro and in vivo. Different concentrations of propofol were used to treat Ishikawa cells. Colony number, cell viability, cell cycle, apoptosis, migration, and invasion were analyzed by colony formation, MTT, flow cytometry, and Transwell assays. In addition, the pcDNA3.1-Sox4 and Sox4 siRNA plasmids were transfected into Ishikawa cells to explore the relationship between propofol and Sox4 in EC cell proliferation. Tumor weight in vivo was measured by xenograft tumor model assay. Protein levels of cell cycle-related factors, apoptosis-related factors, matrix metalloproteinases 9 (MMP9), matrix metalloproteinases 2 (MMP2) and Wnt/β-catenin pathway were examined by western blot. Results showed that propofol significantly decreased colony numbers, inhibited cell viability, migration, and invasion but promoted apoptosis in a dose-dependent manner in Ishikawa cells. Moreover, propofol reduced the expression of Sox4 in a dose-dependent manner. Additionally, propofol significantly suppressed the proportions of Ki67+ cells, but Sox4 overexpression reversed the results. Furthermore, in vivo assay results showed that propofol inhibited tumor growth; however, the inhibitory effect was abolished by Sox4 overexpression. Moreover, propofol inhibited Sox4 expression via inactivation of Wnt/β-catenin signal pathway. Our study demonstrated that propofol inhibited cell proliferation, migration, and invasion but promoted apoptosis by regulation of Sox4 in EC cells. These findings might indicate a novel treatment strategy for EC.


Subject(s)
Animals , Female , Apoptosis/drug effects , Endometrial Neoplasms/drug therapy , Hypnotics and Sedatives/pharmacology , Propofol/pharmacology , SOXC Transcription Factors/metabolism , beta Catenin/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Endometrial Neoplasms/pathology , Mice, Inbred BALB C , Neoplasm Invasiveness , Propofol/administration & dosage , Tumor Stem Cell Assay , Wnt Proteins/metabolism , Xenograft Model Antitumor Assays
20.
Braz. j. med. biol. res ; 51(4): e6867, 2018. graf
Article in English | LILACS | ID: biblio-889068

ABSTRACT

Polydatin, a small molecule from Polygonum cuspidatum, has many biological functions, particularly anti-cancer effects. However, the anti-cancer effects of polydatin in hepatocellular carcinoma (HCC) have not been examined yet. In the present study, MTT assay, BrdU assay, transwell invasion assay, and wound healing assay were performed to determine cell proliferation, invasion and migration. Flow cytometry and TUNEL assay were used to measure cell apoptosis. Quantitative real-time PCR and western blotting assays were used to determine mRNA and protein expression levels. Xenograft experiment was performed to determine the in vivo anti-tumor effect of polydatin. Immunostaining was performed to analyze the expression of caspase-3 and Ki-67. Our results showed that polydatin inhibited cell proliferation in a concentration-dependent and time-dependent manner in the HCC cell lines. Polydatin also induced cell apoptosis in a concentration-dependent manner possibly via increasing the caspase-3 activity, and up-regulating the protein expression of caspase-3, caspase-9, Bax, and down-regulating the protein expression of Bcl-2. In addition, polydatin treatment had an inhibitory effect on cell proliferation, invasion and migration in HCC cell lines. Polydatin treatment also suppressed the Wnt/beta-catenin signaling activities in HCC cells. Polydatin treatment significantly reduced tumor growth in nude mice inoculated with HepG2 cells, suppressed the expression of Ki-67, and increased caspase-3 expression and TUNEL activity. Our data indicated the important role of polydatin for the suppression of HCC progression.


Subject(s)
Animals , Male , Mice , Stilbenes/pharmacology , Cell Movement/drug effects , Apoptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Cell Proliferation/drug effects , Glucosides/pharmacology , Liver Neoplasms, Experimental/drug therapy , Drugs, Chinese Herbal , Blotting, Western , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Real-Time Polymerase Chain Reaction , Flow Cytometry , Liver Neoplasms, Experimental/pathology , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness
SELECTION OF CITATIONS
SEARCH DETAIL